Site is currently on development mode

CNNs, Part 1: An Introduction to Convolutional Neural Networks

Last updated 1 year ago by Victor Zhou


A simple guide to what CNNs are, how they work, and how to build one from scratch in Python.

There’s been a lot of buzz about Convolution Neural Networks (CNNs) in the past few years, especially because of how they’ve revolutionized the field of Computer Vision. In this post, we’ll build on a basic background knowledge of neural networks and explore what CNNs are, understand how they work, and build a real one from scratch (using only numpy) in Python.

This post assumes only a basic knowledge of neural networks. My introduction to Neural Networks covers everything you’ll need to know, so you might want to read that first.

Ready? Let’s jump in.

1. Motivation

A classic use case of CNNs is to perform image classification, e.g. looking at an image of a pet and deciding whether it’s a cat or a dog. It’s a seemingly simple task - why not just use a normal Neural Network?

Good question.

Reason 1: Images are Big

Images used for Computer Vision problems nowadays are often 224x224 or larger. Imagine building a neural network to process 224x224 color images: including the 3 color channels (RGB) in the image, that comes out to 224 x 224 x 3 = 150,528 input features! A typical hidden layer in such a network might have 1024 nodes, so we’d have to train 150,528 x 1024 = 150+ million weights for the first layer alone. Our network would be huge and nearly impossible to train.

It’s not like we need that many weights, either. The nice thing about images is that we know pixels are most useful in the context of their neighbors. Objects in images are made up of small, localized features, like the circular iris of an eye or the square corner of a piece of paper. Doesn’t it seem wasteful for every node in the first hidden layer to look at every pixel?

Reason 2: Positions can change

If you trained a network to detect dogs, you’d want it to be able to a detect a dog regardless of where it appears in the image. Imagine training a network that works well on a certain dog image, but then feeding it a slightly shifted version of the same image. The dog would not activate the same neurons, so the network would react completely differently!

We’ll see soon how a CNN can help us mitigate these problems.

Read full Article